Meet the team

Sarah Mizielinska

"Our aim is to gain a greater understanding of the precise mechanisms of nucleocytoplasmic dysfunction in FTD and ALS at the molecular level to inform disease pathogenesis and potential accurate therapeutic interventions." Sarah Mizielinska
UK DRI Group Leader

Dr Sarah Mizielinska joins the UK DRI at King's to establish her first group. Also a Lecturer in Dementia & Neurodegenerative Disorders at the Maurice Wohl Clinical Neuroscience Institute, King’s College London, her research focuses on molecular and cellular mechanisms of neurodegeneration in dementia and motor neuron diseases, especially those caused by repeat expansions. Obtaining her PhD from the University of Dundee, Sarah went on to complete postdoctoral training at UCL, and was awarded the UCL Early Careers Neuroscience Prize in 2014. Her lab at the UK DRI at King's will investigate transport disruption between neuronal nuclear and cytoplasmic sub-compartments in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

1. At a glance

A key role for neuronal transport disruption in disease

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also known as motor neurone disease (MND)) are devastating and progressive neurodegenerative diseases. Common symptoms to arise in FTD include behavioural and personality changes, and in ALS include issues with movement and breathing. However, increasing evidence suggests that they actually share many features, perhaps including their molecular cause.

Faults in the C9orf72 gene are the most common genetic cause of both conditions and are found in around 1 in 10 patients with FTD and the same proportion of people with ALS. Genes code for proteins in the body and therefore a fault in these instructions can lead to a dysfunctional and potentially harmful protein. The C9orf72 fault also produces new repetitive proteins which are highly toxic.

Scientists do not yet fully understand how these repetitive proteins cause the death of neurons, but they may affect transportation to and from the nucleus – the cell’s control centre. If this passage is somehow altered, this may cause the abnormal build-up of protein in the wrong part of the cell forming toxic aggregates – which are linked with neuron damage in both FTD and ALS.

Dr Sarah Mizielinska and her team are delving into the inner-workings of the neuronal transport machinery in exquisite detail. She hopes to discover more about what effect C9orf72 fault has on transport within the cells and therefore what may be going wrong in FTD and ALS. Success in these investigations may reveal key targets for the design of new treatments for people with these conditions.

2. Scientific goals

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two clinically different neurodegenerative diseases that lie on the same pathogenic spectrum. The two diseases can be found within the same family, but also co-occur within individuals, and share overlapping genetic causes and pathologies. The most common genetic cause of both diseases is a repeat expansion mutation in the gene C9orf72, which is responsible for around 10% of all FTD and ALS cases and is the most common of all neurodegenerative disease-causing mutations.

The C9orf72 mutation could initiate disease due to toxic novel RNA and protein species emanating from the repeat expansion or by the loss of C9orf72 protein. In vitro and in vivo models show that two of the proteins produced from the repeat – repeating polypeptides of glycine-arginine or proline-arginine – are highly neurotoxic. However, it remains unclear exactly how these proteins exert their neurotoxicity. These repetitive polypeptides are disordered in structure, and therefore, perhaps unsurprisingly, interact with other intrinsically disordered proteins. The disordered nature of these proteins allows them to form multivalent interactions and undergo liquid-liquid phase separation and phase transitions, which forms the basis for cellular compartmentalisation and membraneless organelles. Indeed, in vitro studies show that C9orf72 polypeptides associate with membraneless organelles such as the nucleolus and stress granules and disrupt their function.

This is by no means the only implication of proteins containing intrinsically disordered domains in FTD and ALS. Many proteins that either harbour disease-causing mutations or form pathological aggregates contain intrinsically disordered domains, such as TDP-43, FUS, and hnRNPs, and the mutations often affect the phase separation properties of these proteins. Pathological aggregation of these proteins is a hallmark of FTD/ALS (and other dementias) and is the result of dysfunctional nucleocytoplasmic transport and their consequent mislocalisation from the nucleus to the cytoplasm. Cytoplasmic protein aggregates can also sequester elements of the nucleocytoplasmic transport pathway. This suggests that nucleocytoplasmic transport may be an initiator and propagator of neurodegenerative disease. However, the precise mechanisms by which nucleocytoplasmic transport is affected by the C9orf72 mutation is not yet known.

Main objectives and research goals:

This UK DRI programme led by Sarah Mizielinska will investigate the connection between the dynamics and protein interactions during nucleocytoplasmic transport through the nuclear pore, disease-associated proteins containing low complexity domains (LCDs), and common downstream pathologies:

1. How is single-molecule transport through the nuclear pore affected by disease-associated proteins? Using super-resolution microscopy to image single molecules in intact cells to monitor nucleocytoplasmic trafficking dynamics.

2. How are the biophysical properties of nuclear pore selection barriers affected in FTD and ALS? Experimental approaches include the use of hydrogel-mimics prepared from phase transitioning of human nuclear pore proteins.

3. How is disrupted nucleocytoplasmic transport linked to common disease pathologies and cell death? Multiplexed longitudinal live cell imaging combining nuclear import experiments with other assays.

3. Team members

Dr Emma Clayton (Senior Researcher)
Dr Seoungjun Lee (Postdoctoral Researcher)
Dr Dan Solomon (Postdoctoral Researcher)
Dr Niamh O’Brien (Postdoctoral Researcher - joint with Marc-David Ruepp)
Dr Erin Hedges (Postdoctoral Researcher - joint with Marc-David Ruepp)
Eleanor Wycherley (Research Assistant)
Rebecca Casterton (Research Associate)
Anthony Hoang (Research Technician)
Sofia Marina Konstantinidou (Technician)
Ivo Carre (PhD Student)
Vito D'Alessandro (PhD Student)
Olivia Houghton (PhD Student)
Laura Huggon (PhD Student)
Suji Lee (PhD Student)
Aitana Martinez Cotrina (PhD Student)
Deniz Vaizoglu (PhD Student)

4. Collaborations

Within UK DRI:

  • Prof Chris Shaw, UK DRI at Kings
  • Dr Marc-David Ruepp, UK DRI at Kings
  • Prof Annalisa Pastore, UK DRI at Kings
  • Prof Adrian Isaacs, UK DRI at UCL

Beyond UK DRI:

  • Dr Jean-Marc Gallo, King's College London
  • Prof Josef Penninger, IBMA Austria/Canada
  • Dr Manolis Fanto, King's College London
  • Dr Deepak Srivastava, King's College London
  • Dr Patricia Gomez Suaga, King's College London

5. Topics

Frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), nucleocytoplasmic transport, nuclear pore, c9orf72, TDP-43

6. Techniques

Super-resolution microscopy (STORM), CRISPR/AAV, multiplex longitudinal live cell imaging, phase transitioning

7. Key publications

Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol. 2019 Feb;45(1):58-80

Moens T.G., Mizielinska S., Niccoli T., Mitchell J.S., Thoeng A., Ridler C.E., Gronke S., Esser J., Heslegrave A., Zetterberg H., Partridge L., Isaacs A.M. Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD. Acta Neuropathol. 2018;135(3):445-457

Mizielinska, S., Ridler, C.E., Balendra, R., Thoeng, A., Woodling, N.S., Grässer, F.A., Plagnol, V., Lashley, T., Partridge, L. and Isaacs, A.M., 2017. Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration. Acta neuropathologica communications, 5(1), p.29.

Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O., Pietrzyk, J. and Cleverley, K., 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science, 345(6201), pp.1192-1194.

Mizielinska, S., Lashley, T., Norona, F.E., Clayton, E.L., Ridler, C.E., Fratta, P. and Isaacs, A.M., 2013. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta neuropathologica, 126(6), pp.845-857.

8. Lab website

Follow Sarah on Twitter