CL: What are some examples of technological innovations that have aided in the advancement of your field in recent years?
NS: There has been the revolution of single cell technology. The number of cells we can study has grown exponentially. In 2015 having 3000 cells was a huge study. Now in 2019 papers are coming out with millions of cells. Coincident with this has been a similar increase in knowledge about human genetics: the number of samples included in studies have grown, as have the number of traits we have data on, and the tools for analysing the data.
CL: Do private personal genomics companies such as 23andMe contribute to these?
NS: 23andMe has been a large contributor, and along with the UK biobank they have greatly improved the power of genetic studies. The UK Biobank sequenced the genomes of 500,000 people who had been extensively phenotyped, which meant well powered genetic data became available overnight for all the traits they had measured. The UK Biobank still lacks sufficient data on many diseases though. 23andMe have made substantial contribution’s to research on several diseases, including my recent Parkinson’s work and another insomnia study: they contributed genetic data from over a million people to these papers.
CL: In science, both fundamental and translational research are essential, but it can sometimes be harder for the public to see how the work you do for example, will lead to treatments for dementia that will one day benefit them. You spoke about certain cell types being more vulnerable to degeneration in PD as one of your findings; how do you envision findings such as these contributing to the fight against dementia?
NS: If we cannot narrow down what a disease is, we can’t properly research drugs for them. There are multitudes of hypotheses for how any given disease is caused. For Schizophrenia, almost every cell type in the body, from the uterus to the immune system, has a paper claiming it is linked to the disease. Many such links are made on the basis of animal models, while others are often little more than speculation. Human genetics is going to really shake things up here. The thing with genetics is that it is causal: if genetics pinpoints a cell type as being involved in the disease, you can be confident that it is central to the disease aetiology. If genetics hadn’t pinpointed microglia as being central to Alzheimer’s mechanisms then people wouldn’t be targeting them now.
CL: Are you worried that the advances in technology and resources to do studies that allow people to see their susceptibility to diseases such as dementia, are going to come faster than the cures themselves? For example we might have a better idea that someone is going to get AD, but not be able to do anything about it.
NS: I can see that there is a risk there, but at the moment genetic data is not hugely predictive on the individual level. To my mind, most the utility of genetics actually comes from the population level, where it can teach us the mechanisms of a disease . The benefit of this open data sharing definitely outweighs any risk to my mind. Some personal genetics websites are perhaps irresponsible and report increased disease risks associated with mere handfuls of small genetic variations, but this does help build a level of public interest and understanding of genetics. The UK is at the forefront of figuring out how to deal with genetics in a clinical setting, so we are in a good place to be.
CL: What drives your passion for research?
NS: Primarily it’s a sense of wonderment at how the brain works, and how a self-aware organ capable of complex thought managed to evolve. Attempting to understand this draws on so many different fields, that there is always some fascinating new insight or old book that keeps me excited. I’m particularly interested in looking at neuroscience through the perspective of variation: how brains differ between species and across individuals. One of the forms of variation that clearly exists in humans is susceptibility to brain disease- some people get them and others don’t. In many cases, genetics plays a major role in determining this. As we unravel the mechanisms underlying brain disorders, we will gain a better understanding of the evolutionary history that lead to these variations existing in the population. As we gain a better understanding of how our brain was built, we’ll gain more insight into how to reverse engineer it. Each new piece of the jigsaw helps solve a multitude of puzzles.
CL: That’s a great driver. Are you optimistic about the future of dementia research?
NS: Oh yes, I think the advances in genetics have totally changed the game. The latest Genome Wide Association Studies (GWAS) have dramatically improved our ability to make causal inferences about the mechanisms of the dementias, and I’m hoping to see even bigger studies in the next few years. A GWAS measures millions of variants across the genomes of thousands (or millions) of people, to detect changes in their frequency between cases with diseases and the healthy population. Huge numbers of genetic variants are now known to play a role in causing complex traits, like height, BMI or AD. Once we have this information, we can figure out what the mechanisms underlying these diseases are and it will then be quick work to come to a cure. With a disease like dementia, where you only see the brain maybe thirty years after the disease has started, it has been very hard to determine what the basic diseases mechanisms are at the earliest stages. Genetics has given us the insight we needed. In ten years, our understanding of disease mechanisms will be totally transformed.