Major pathway that leads to brain cell death is blocked
A team of MRC scientists, led by newly named UK DRI Centre Director Giovanna Mallucci, a few years ago identified a major pathway that leads to brain cell death in mice. The team has now found two drugs which block the pathway and prevent neurodegeneration. The drugs caused minimal side effects in the mice and one is already licensed for use in humans, so is ready for clinical trials.
Misfolded proteins build up in the brain in several neurodegenerative diseases and are a major factor in dementias such as Alzheimer’s and Parkinson’s as well as prion diseases. Previously, the team found that the accumulation of misfolded proteins in mice with prion disease over-activates a natural defence mechanism, ‘switching off’ the vital production of new proteins in brain cells. They then found switching protein production back on with an experimental drug halted neurodegeneration. However, the drug tested was toxic to the pancreas and not suitable for testing in humans.
Two promising drugs
In the latest study, published today in Brain, the team tested 1040 compounds from the National Institute for Neurological Disorders and Stroke, first in worms (C.elegans) which have a functioning nervous system and are a good experimental model for screening drugs to be used on the nervous system and then in mammalian cells. This revealed a number of suitable candidate compounds that could then be tested in mouse models of prion disease and a form of familial tauopathy (frontotemporal dementia - FTD), both of which had been protected by the experimental - but toxic - compounds in the team’s previous studies.
The researchers identified two drugs that restored protein production rates in mice – trazodone hydrochloride, a licensed antidepressant, and dibenzoylmethane (DBM), a compound being trialled as an anti-cancer drug. Both drugs prevented the emergence of signs of brain cell damage in most of the prion-diseased mice and restored memory in the FTD mice. In both mouse models, the drugs reduced brain shrinkage which is a feature of neurodegenerative disease.