Skip to main content
Search
Main content
Genes
Published

Illumina SBS Sequencing and DNBSEQ Perform Similarly for Single-Cell Transcriptomics

Authors

Nadine Bestard-Cuche, David A D Munro, Meryam Beniazza, Josef Priller, Anna Williams, Andrea Corsinotti

Abstract

Genes (Basel). 2024 Nov 6;15(11):1436. doi: 10.3390/genes15111436.

ABSTRACT

BACKGROUND/OBJECTIVES: High-throughput single-cell RNA sequencing (scRNA-seq) workflows produce libraries that demand extensive sequencing. However, standard next-generation sequencing (NGS) methods remain expensive, contributing to the high running costs of single-cell experiments and often negatively affecting the sample numbers and statistical strength of such projects. In recent years, a plethora of new sequencing technologies have become available to researchers through several manufacturers, often providing lower-cost alternatives to standard NGS.

METHODS: In this study, we compared data generated from mouse scRNA-seq libraries sequenced with both standard Illumina sequencing by synthesis (Illumina SBS) and MGI's DNA nanoball sequencing (DNBSEQ).

RESULTS: Our findings reveal similar overall performance using both technologies. DNBSEQ exhibited mildly superior sequence quality compared to Illumina SBS, as evidenced by higher Phred scores, lower read duplication rates and a greater number of genes mapping to the reference genome. Yet these improvements did not translate into meaningful differences in single-cell analysis parameters in our experiments, including detection of additional genes within cells, gene expression saturation levels and numbers of identified cells, with both technologies demonstrating equally robust performance in these aspects. The data produced by both sequencing platforms also produced comparable analytical outcomes for single-cell analysis. No significant difference in the annotation of cells into different cell types was observed and the same top genes were differentially expressed between populations and experimental conditions.

CONCLUSIONS: Overall, our data demonstrate that alternative technologies can be applied to sequence scRNA-seq libraries, generating virtually indistinguishable results compared to standard methods, and providing cost-effective alternatives.

PMID:39596636 | PMC:PMC11594097 | DOI:10.3390/genes15111436

UK DRI Authors

Josef Priller

Prof Josef Priller

Group Leader

Defining and modulating myeloid cell function in neurodegenerative diseases

Prof Josef Priller
Anna Williams

Prof Anna Williams

UK DRI Co-investigator

Professor of Regenerative Neurology, University of Edinburgh

Prof Anna Williams