Skip to main content
Search
Main content
BMC biology
Published

Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites

Authors

Nejc Haberman, Holly Digby, Rupert Faraway, Rebecca Cheung, Anob M Chakrabarti, Andrew M Jobbins, Callum Parr, Kayoko Yasuzawa, Takeya Kasukawa, Chi Wai Yip, Masaki Kato, Hazuki Takahashi, Piero Carninci, Santiago Vernia, Jernej Ule, Christopher R Sibley, Aida Martinez-Sanchez, Boris Lenhard

Abstract

BMC Biol. 2024 Nov 7;22(1):254. doi: 10.1186/s12915-024-02032-7.

ABSTRACT

The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.

PMID:39511645 | PMC:PMC11546257 | DOI:10.1186/s12915-024-02032-7

UK DRI Authors

Jernej Ule profile

Prof Jernej Ule

Centre Director

Deciphering the role of RNA in amyotrophic lateral sclerosis and frontotemporal dementia

Prof Jernej Ule