The main component of this mechanism appears to be one of a class of proteins known as heat shock proteins (HSPs), more of which are made when cells are exposed to temperatures above their normal growth temperature, and in response to stress.
Dr Avezov speculates that this might help explain one of the more unusual observations within the field of dementia research. “There have been some studies recently of people in Scandinavian countries who regularly use saunas, suggesting that they may be at lower risk of developing dementia. One possible explanation for this is that this mild stress triggers a higher activity of HSPs, helping correct tangled proteins.”
One of the factors that has previous hindered this field of research has been the inability to visualise these processes in live cells. Working with teams from Pennsylvania State University and the University of Algarve, the team has developed a technique that allows them to detect protein misfolding in live cells. It relies on measuring light patterns of a glowing chemical over a scale of nanoseconds - one billionth of a second.
“It’s fascinating how measuring our probe’s fluorescence lifetime on the nanoseconds scale under a laser-powered microscope makes the otherwise invisible aggregates inside the cell obvious,” said Professor Eduardo Melo, one of the leading authors, from the University of Algarve, Portugal.
To find out more about the work of Dr Edward Avezov, take a look at his profile page.
Sign up to the UK DRI newsletter to keep up to date on the latest news, research and public events from the Institute.
Reference: Melo, EP, et al. Stress-induced protein disaggregation in the Endoplasmic Reticulum catalysed by BiP. Nature Comms; 6 May 2022; DOI: 10.1038/s41467-022-30238-2
Article published: 6 May 2022
Image and video credit: Edward Avezov
Video shows a three-dimensional reconstruction of the endoplasmic reticulum of a live cell showing protein aggregates in yellow, and normal proteins in green.