Skip to main content
Search
Main content
Brain : a journal of neurology
Published

A comprehensive head-to-head comparison of key plasma phosphorylated tau 217 biomarker tests

Authors

Noëlle Warmenhoven, Gemma Salvadó, Shorena Janelidze, Niklas Mattsson-Carlgren, Divya Bali, Anna Orduña Dolado, Hartmuth Kolb, Gallen Triana-Baltzer, Nicolas R Barthélemy, Suzanne E Schindler, Andrew J Aschenbrenner, Cyrus A Raji, Tammie L S Benzinger, John C Morris, Laura Ibanez, Jigyasha Timsina, Carlos Cruchaga, Randall J Bateman, Nicholas Ashton, Burak Arslan, Henrik Zetterberg, Kaj Blennow, Alexa Pichet Binette, Oskar Hansson

Abstract

Brain. 2024 Oct 28:awae346. doi: 10.1093/brain/awae346. Online ahead of print.

ABSTRACT

Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests. Samples from 998 individuals (mean[range] age 68.5[20.0-92.5], 53% female) from the Swedish BioFINDER-2 cohort, including both cognitively unimpaired and cognitively impaired individuals, were analyzed. Plasma p-tau217 was measured with mass spectrometry (MS) assays (the ratio between phosphorylated and non-phosphorylated [%p-tau217WashU] and p-tau217WashU) as well as with immunoassays (p-tau217Lilly, p-tau217Janssen, p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, the FDA-approved p-tau181/Aβ42Elecsys, and p-tau181Elecsys. All plasma p-tau217 tests exhibited a high ability to detect abnormal Aβ-PET (AUC range: 0.91-0.96) and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (Pdiff<0.007). For detecting Aβ-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 91% (immunoassays: 84-87%), and a specificity of 94% (immunoassays: 85-89%). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aβ-PET status (Pdiff<0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (Pdiff=0.025). Plasma %p-tau217WashU exhibited stronger associations with all PET load outcomes compared to immunoassays; baseline Aβ-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff<0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff<0.001), longitudinal Aβ-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff<0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff<0.014). Among immunoassays, plasma p-tau217Lilly was more associated with Aβ-PET load than plasma p-tau217Janssen (Pdiff<0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all Pdiff<0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination[MMSE]) than all immunoassays (R2 %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; Pdiff<0.024). The main results were replicated in an external cohort from Washington University in St Louis (n =219). Finally, p-tau217NULISA showed similar performance to other immunoassays in subsets of both cohorts. In summary, both MS- and immunoassay-based p-tau217 tests generally perform well in identifying Aβ-PET, tau-PET, and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for AD pathology, while some immunoassays might be better suited as triage tests where positive results are confirmed with a second test, which needs to be determined by future reviews incorporating results from multiple cohorts.

PMID:39468767 | DOI:10.1093/brain/awae346

UK DRI Authors

Profile picture of Henrik Zetterberg

Prof Henrik Zetterberg

Group Leader

Pioneering the development of fluid biomarkers for dementia

Prof Henrik Zetterberg