Abstract
Brain. 2025 Feb 26:awaf078. doi: 10.1093/brain/awaf078. Online ahead of print.
ABSTRACT
Neuroinflammation is a feature of many neurodegenerative diseases, and is quantified in vivo by PET imaging with radioligands for the translocator protein (TSPO, e.g. [11C]-PK11195). TSPO radioligand binding correlates with clinical severity and predicts clinical progression. However, the cellular substrate of altered TSPO binding is controversial and requires neuropathological validation. We used progressive supranuclear palsy (PSP) as a demonstrator condition, to test the hypothesis that [11C]-PK11195 PET reflects microglial changes. We included people with PSP-Richardson's syndrome who had undergone [11C]-PK11195 PET in life (n=8). In post-mortem brain tissue from the same participants, we characterised cell-type specific TSPO expression and quantified microgliosis in eight cortical and eleven subcortical regions. Double-immunofluorescence labelling for TSPO and cell markers showed TSPO expression in microglia, astrocytes, and endothelial cells. Microglial (and not astrocytic) TSPO levels were higher in donors with PSP compared to controls (n=3), and correlated with changes in microglial density. There was a significant positive correlation between regional [11C]-PK11195 binding potential ante-mortem and the density of post-mortem CD68+ phagocytic microglia, as well as microglial TSPO levels. We conclude that in vivo disease-related changes in [11C]-PK11195 binding is largely driven by microglia and can be interpreted as a biomarker of microglia-mediated neuroinflammation in tauopathies.
PMID:40036275 | DOI:10.1093/brain/awaf078
UK DRI Authors
