Skip to main content
Search
Main content
Brain communications
Published

Single-molecule characterization of salivary protein aggregates from Parkinson's disease patients: a pilot study

Authors

Martin Furlepa, Yu P Zhang, Evgeniia Lobanova, Lakmini Kahanawita, Giorgio Vivacqua, Caroline H Williams-Gray, David Klenerman

Abstract

Brain Commun. 2024 May 21;6(3):fcae178. doi: 10.1093/braincomms/fcae178. eCollection 2024.

ABSTRACT

Saliva is a convenient and accessible biofluid that has potential as a future diagnostic tool for Parkinson's disease. Candidate diagnostic tests for Parkinson's disease to date have predominantly focused on measurements of α-synuclein in CSF, but there is a need for accurate tests utilizing more easily accessible sample types. Prior studies utilizing saliva have used bulk measurements of salivary α-synuclein to provide diagnostic insight. Aggregate structure may influence the contribution of α-synuclein to disease pathology. Single-molecule approaches can characterize the structure of individual aggregates present in the biofluid and may, therefore, provide greater insight than bulk measurements. We have employed an antibody-based single-molecule pulldown assay to quantify salivary α-synuclein and amyloid-β peptide aggregate numbers and subsequently super-resolved captured aggregates using direct Stochastic Optical Reconstruction Microscopy to describe their morphological features. We show that the salivary α-synuclein aggregate/amyloid-β aggregate ratio is increased almost 2-fold in patients with Parkinson's disease (n = 20) compared with controls (n = 20, P < 0.05). Morphological information also provides insight, with saliva from patients with Parkinson's disease containing a greater proportion of larger and more fibrillar amyloid-β aggregates than control saliva (P < 0.05). Furthermore, the combination of count and morphology data provides greater diagnostic value than either measure alone, distinguishing between patients with Parkinson's disease (n = 17) and controls (n = 18) with a high degree of accuracy (area under the curve = 0.87, P < 0.001) and a larger dynamic range. We, therefore, demonstrate for the first time the application of highly sensitive single-molecule imaging techniques to saliva. In addition, we show that aggregates present within saliva retain relevant structural information, further expanding the potential utility of saliva-based diagnostic methods.

PMID:38863577 | PMC:PMC11166177 | DOI:10.1093/braincomms/fcae178

UK DRI Authors

David Klenerman

Prof Sir David Klenerman

Group Leader

Determining how protein clumps form, damage the brain and change as the different neurodegenerative diseases develop to know which ones to target for therapies

Prof Sir David Klenerman