Skip to main content
Search
Main content
Hum Mol Genet
Published

Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson's disease.

Authors

Cynthia Sandor, Paul Robertson, Charmaine Lang, Andreas Heger, Heather Booth, Jane Vowles, Lorna Witty, Rory Bowden, Michele Hu, Sally A Cowley, Richard Wade-Martins, Caleb Webber

Abstract

While induced pluripotent stem cell (iPSC) technologies enable the study of inaccessible patient cell types, cellular heterogeneity can confound the comparison of gene expression profiles between iPSC-derived cell lines. Here, we purified iPSC-derived human dopaminergic neurons (DaNs) using the intracellular marker, tyrosine hydroxylase. Once purified, the transcriptomic profiles of iPSC-derived DaNs appear remarkably similar to profiles obtained from mature post-mortem DaNs. Comparison of the profiles of purified iPSC-derived DaNs derived from Parkinson's disease (PD) patients carrying LRRK2 G2019S variants to controls identified significant functional convergence amongst differentially-expressed (DE) genes. The PD LRRK2-G2019S associated profile was positively matched with expression changes induced by the Parkinsonian neurotoxin rotenone and opposed by those induced by clioquinol, a compound with demonstrated therapeutic efficacy in multiple PD models. No functional convergence amongst DE genes was observed following a similar comparison using non-purified iPSC-derived DaN-containing populations, with cellular heterogeneity appearing a greater confound than genotypic background.

PMID:28096185 | DOI:

UK DRI Authors

Cynthia Sandor

Dr Cynthia Sandor

Group Leader

Developing new ways to detect and monitor Parkinson’s

Dr Cynthia Sandor
Caleb Webber

Prof Caleb Webber

Director of Data Science & Group Leader

Combining state-of-the-art stem cell models with bioinformatics techniques to boost our understanding of the biological mechanisms underlying Parkinson’s disease

Prof Caleb Webber